Home > News > Content

Contact Information

Add: West of Yinda Road, North of Gongye 3RD Street, Weicheng Economic Development Zone, Weifang City, Shandong Province
Tel: +86-536-8375505
Mob: +86-186-6066-0902
Fax: +86-536-8985507
E-mail: yilicast@yilicasting.com

Thailand Td04hl Compressor Wheel
Dec 26, 2018
Basic Info
  • Model NO.: BOSJ-C

  • Body Material: Aluminium

  • Electric Turbocharger Type: Axialflow

  • ETS Type: Axialflow

  • Type: Compound Turbo System

  • Certification: ISO9001, CE, E-Mark, RoHS

  • ETS Component: Turbine

  • Making Machine: 5 Axis

  • Specification: BOSJ-T

Product Description

  
Compressor Wheel Parameter
ApplicationReplace wheel number: ???
Fit CHRA : 700177-0001
Fit Turbo # : 714569-0001, 714569-0002, 714569-0003
Product SituationBrand New
Maximum boost 5 bar / 70 Psi
BalanceBalanced By SCHENCK Germany
Ready to competition
Wheel SizeInducer Dia.: 54.97 / 76.13 mm (Trim 52)
Exducer Dia. : 76.13 mm
Extend Tapered Tip Exducer dia : 82.54 mm
Tip Height: 6.55 mm
Super Back Height: 2.36 mm
Bore: 5.99 mm
Blade : 6+6
MaterialForged Aluminum
 NoteWe can customize billet compressor wheel, Please contact us if you need it.
We can combine shipping for all items and will send invoice when we receive all of your order.
 
On the left, the brass oil drain connection. On the right are the braided oil supply line and water coolant line connections.
 
Compressor impeller side with the cover removed.
 
Turbine side housing removed.
A turbocharger's performance is closely tied to its size. Large turbochargers take more heat and pressure to spin the turbine, creating lag at low speed. Small turbochargers spin quickly, but may 
 
not have the same performance at high acceleration. To efficiently combine the benefits of large and small wheels, advanced schemes are used such as twin-turbochargers, twin-scroll turbochargers, 
 
or variable-geometry turbochargers.
 
Twin-turbo
 
Twin-turbo or bi-turbo designs have two separate turbochargers operating in either a sequence or in parallel. In a parallel configuration, both turbochargers are fed one-half of the engine's 
 
exhaust. In a sequential setup one turbocharger runs at low speeds and the second turns on at a predetermined engine speed or load. Sequential turbochargers further reduce turbo lag, but require an 
 
intricate set of pipes to properly feed both turbochargers.
 Pre-treatment Machine

Two-stage variable twin-turbos employ a small turbocharger at low speeds and a large one at higher speeds. They are connected in a series so that boost pressure from one turbocharger is multiplied 
 
by another, hence the name "2-stage." The distribution of exhaust gas is continuously variable, so the transition from using the small turbocharger to the large one can be done incrementally. Twin 
 
turbochargers are primarily used in Diesel engines. For example, in Opel bi-turbo Diesel, only the smaller turbocharger works at low speed, providing high torque at 1,500-1,700 rpm. Both 
 
turbochargers operate together in mid range, with the larger one pre-compressing the air, which the smaller one further compresses. A bypass valve regulates the exhaust flow to each turbocharger. 
 
At higher speed (2,500 to 3,000 RPM) only the larger turbocharger runs.
 
Smaller turbochargers have less turbo lag than larger ones, so often two small turbochargers are used instead of one large one. This configuration is popular in engines over 2,500 CCs and in V-
 
shape or boxer engines.
 
Twin-scroll
 
Twin-scroll or divided turbochargers have two exhaust gas inlets and two nozzles, a smaller sharper angled one for quick response and a larger less angled one for peak performance.
 
With high-performance camshaft timing, exhaust valves in different cylinders can be open at the same time, overlapping at the end of the power stroke in one cylinder and the end of exhaust stroke 
 
in another. In twin-scroll designs, the exhaust manifold physically separates the channels for cylinders that can interfere with each other, so that the pulsating exhaust gasses flow through 
 
separate spirals (scrolls). With common firing order 1-3-4-2, two scrolls of unequal length pair cylinders 1-4 and 3-2. This lets the engine efficiently use exhaust scavenging techniques, which 
 
decreases exhaust gas temperatures and NOx emissions, improves turbine efficiency, and reduces turbo lag evident at low engine speeds.
 
Variable-geometry
Variable-geometry or variable-nozzle turbochargers use moveable vanes to adjust the air-flow to the turbine, imitating a turbocharger of the optimal size throughout the power curve. The vanes are 
 
placed just in front of the turbine like a set of slightly overlapping walls. Their angle is adjusted by an actuator to block or increase air flow to the turbine. This variability maintains a 
 
comparable exhaust velocity and back pressure throughout the engine's rev range. The result is that the turbocharger improves fuel efficiency without a noticeable level of turbocharger lag.
 

Compressor Precision Machine

The compressor increases the mass of intake air entering the combustion chamber. The compressor is made up of an impeller, a diffuser and a volute housing.
Main article: Centrifugal compressor
The operating range of a compressor is described by the "compressor map".
 
Main article: Compressor map
  Additional technologies commonly used in turbocharger installations
Intercooling[edit]
 
Illustration of inter-cooler location.
When the pressure of the engine's intake air is increased, its temperature also increases. In addition, heat soak from the hot exhaust gases spinning the turbine may also heat the intake air. The warmer the intake air, the less dense, and the less oxygen available for the combustion event, which reduces volumetric efficiency. Not only does excessive intake-air temperature reduce efficiency, it also leads to engine knock, or detonation, which is destructive to engines.
 

Turbocharger units often make use of an intercooler (also known as a charge air cooler), to cool down the intake air. Intercoolers are often[when?] tested for leaks during routine servicing, particularly in trucks where a leaking intercooler can result in a 20% reduction in fuel economy.[citation needed]
 
(Note that intercooler is the proper term for the air cooler between successive stages of boost, whereas charge air cooler is the proper term for the air cooler between the boost stage(s) and the appliance that consumes the boosted air.)
 
Water injection
 
An alternative to intercooling is injecting water into the intake air to reduce the temperature. This method has been used in automotive and aircraft applications.